Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Leukemia ; 38(1): 45-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38017103

RESUMO

Clinical outcome of patients with acute myeloid leukemia (AML) is associated with demographic and genetic features. Although the associations of acquired genetic alterations with patients' sex have been recently analyzed, their impact on outcome of female and male patients has not yet been comprehensively assessed. We performed mutational profiling, cytogenetic and outcome analyses in 1726 adults with AML (749 female and 977 male) treated on frontline Alliance for Clinical Trials in Oncology protocols. A validation cohort comprised 465 women and 489 men treated on frontline protocols of the German AML Cooperative Group. Compared with men, women more often had normal karyotype, FLT3-ITD, DNMT3A, NPM1 and WT1 mutations and less often complex karyotype, ASXL1, SRSF2, U2AF1, RUNX1, or KIT mutations. More women were in the 2022 European LeukemiaNet intermediate-risk group and more men in adverse-risk group. We found sex differences in co-occurring mutation patterns and prognostic impact of select genetic alterations. The mutation-associated splicing events and gene-expression profiles also differed between sexes. In patients aged <60 years, SF3B1 mutations were male-specific adverse outcome prognosticators. We conclude that sex differences in AML-associated genetic alterations and mutation-specific differential splicing events highlight the importance of patients' sex in analyses of AML biology and prognostication.


Assuntos
Leucemia Mieloide Aguda , Caracteres Sexuais , Adulto , Humanos , Masculino , Feminino , Prognóstico , Nucleofosmina , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Tirosina Quinase 3 Semelhante a fms/genética
2.
Front Immunol ; 14: 1275329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954586

RESUMO

Competent T-cells with sufficient levels of fitness combat cancer formation and progression. In multiple myeloma (MM), T-cell exhaustion is caused by several factors including tumor burden, constant immune activation due to chronic disease, age, nutritional status, and certain MM treatments such as alkylating agents and proteasome inhibitors. Many currently used therapies, including bispecific T-cell engagers, anti-CD38 antibodies, proteasome inhibitors, and CART-cells, directly or indirectly depend on the anti-cancer activity of T-cells. Reduced T-cell fitness not only diminishes immune defenses, increasing patient susceptibility to opportunistic infections, but can impact effectiveness MM therapy effectiveness, bringing into focus sequencing strategies that could modulate T-cell fitness and potentially optimize overall benefit and clinical outcomes. Certain targeted agents used to treat MM, such as selective inhibitors of nuclear export (SINE) compounds, have the potential to mitigate T-cell exhaustion. Herein referred to as XPO1 inhibitors, SINE compounds inhibit the nuclear export protein exportin 1 (XPO1), which leads to nuclear retention and activation of tumor suppressor proteins and downregulation of oncoprotein expression. The XPO1 inhibitors selinexor and eltanexor reduced T-cell exhaustion in cell lines and animal models, suggesting their potential role in revitalizating these key effector cells. Additional clinical studies are needed to understand how T-cell fitness is impacted by diseases and therapeutic factors in MM, to potentially facilitate the optimal use of available treatments that depend on, and impact, T-cell function. This review summarizes the importance of T-cell fitness and the potential to optimize treatment using T-cell engaging therapies with a focus on XPO1 inhibitors.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Linhagem Celular Tumoral , Linfócitos T
3.
Exp Hematol Oncol ; 12(1): 78, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715291

RESUMO

Leiomyosarcoma (LMS) is a rare soft tissue sarcoma (STS) that begins in smooth muscle tissue and most often initiates in the abdomen or uterus. Compared with other uterine cancers, uterine LMS (ULMS) is an aggressive tumor with poor prognosis and a high risk of recurrence and death, regardless of the stage at presentation. Selinexor is a first-in-class selective inhibitor of nuclear export (SINE) compound that reversibly binds to exportin 1 (XPO1), thereby reactivating tumor suppressor proteins and downregulating the expression of oncogenes and DNA damage repair (DDR) proteins. In this study, we evaluated the effects of selinexor in combination with doxorubicin and eribulin in the LMS tumor model in vitro and in vivo. Treatment of selinexor combined with eribulin showed synergistic effects on tumor growth inhibition in SK-UT1 LMS-derived xenografts. Immunohistochemical assessment of the tumor tissues showed a significantly reduced expression of proliferation (Ki67) and XPO1 markers following combination therapy compared to the control group. Global transcriptome analyses on tumor tissue revealed that the combination therapy regulates genes from several key cancer-related pathways that are differentially expressed in ULMS tumors. To our knowledge, this is the first preclinical study demonstrating the anti-cancer therapeutic potential of using a combination of selinexor and eribulin in vivo. Results from this study further warrant clinical testing a combination of chemotherapy agents with selinexor to reduce the morbidity and mortality from ULMS.

4.
Leukemia ; 37(10): 2036-2049, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528310

RESUMO

The first-in-class inhibitor of exportin-1 (XPO1) selinexor is currently under clinical investigation in combination with the BTK inhibitor ibrutinib for patients with chronic lymphocytic leukaemia (CLL) or non-Hodgkin lymphoma. Selinexor induces apoptosis of tumour cells through nuclear retention of tumour suppressor proteins and has also recently been described to modulate natural killer (NK) cell and T cell cytotoxicity against lymphoma cells. Here, we demonstrate that XPO1 inhibition enhances NK cell effector function against primary CLL cells via downregulation of HLA-E and upregulation of TRAIL death receptors DR4 and DR5. Furthermore, selinexor potentiates NK cell activation against CLL cells in combination with several approved treatments; acalabrutinib, rituximab and obinutuzumab. We further demonstrate that lymph node associated signals (IL-4 + CD40L) inhibit NK cell activation against CLL cells via upregulation of HLA-E, and that inhibition of XPO1 can overcome this protective effect. These findings allow for the design of more efficacious combination strategies to harness NK cell effector functions against CLL.


Assuntos
Antígenos de Histocompatibilidade Classe I , Hidrazinas , Carioferinas , Leucemia Linfocítica Crônica de Células B , Receptores Citoplasmáticos e Nucleares , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Hidrazinas/farmacologia , Antígenos de Histocompatibilidade Classe I/metabolismo
5.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37170651

RESUMO

Approximately 70% of human breast cancers express estrogen receptor-α (ERα), providing a potential target for endocrine therapy. However, 30% to 40% of patients with ER+ breast cancer still experience recurrence and metastasis, with a 5-year relative overall survival rate of 24%. In this study, we identified nicotinamide phosphoribosyltransferase (NAMPT), an important enzyme in nicotinamide adenine dinucleotide (NAD+) metabolism, to be increased in metastatic breast cancer (MBC) cells treated with fulvestrant (Fulv). We tested whether the blockade of NAD+ production via inhibition of NAMPT synergizes with standard-of-care therapies for ER+ MBC in vitro and in vivo. A synergistic effect was not observed when KPT-9274 was combined with palbociclib or tamoxifen or when Fulv was combined with other metabolic inhibitors. We show that NAMPT inhibitor KPT-9274 and Fulv works synergistically to reduce metastatic tumor burden. RNA-sequencing analysis showed that NAMPT inhibitor in combination with Fulv reversed the expression of gene sets associated with more aggressive tumor phenotype, and metabolomics analysis showed that NAMPT inhibition reduced the abundance of metabolites associated with several key tumor metabolic pathways. Targeting metabolic adaptations in endocrine-resistant MBC is a novel strategy, and alternative approaches aimed at improving the therapeutic response of metastatic ER+ tumors are needed. Our findings uncover the role of ERα-NAMPT crosstalk in MBC and the utility of NAMPT inhibition and antiestrogen combination therapy in reducing tumor burden and metastasis, potentially leading to new avenues of MBC treatment.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Humanos , Feminino , Receptor alfa de Estrogênio/genética , NAD/metabolismo , Neoplasias da Mama/genética , Acrilamidas , Citocinas/metabolismo , Linhagem Celular Tumoral
6.
Blood Adv ; 7(12): 2926-2937, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36827679

RESUMO

Selinexor (KPT-330) is a small molecule inhibitor of XPO1, which mediates the transport of tumor suppressor proteins, oncogene messenger RNAs, and other proteins involved in governing cell growthfrom the cell nucleus to the cytoplasm. It is overexpressed in many cancer types. Because eukaryotic translation initiator factor 4E (eIF4E) plays a critical role in protein translation in cancer cells in multiple myeloma (MM), we evaluated the effectiveness of combined inhibition of protein translation and nuclear export in MM. Selinexor, an inhibitor of nuclear protein export, dose-dependently decreased eIF4E, IKZF1, and c-MYC protein levels. Using a doxycycline-inducible-pLKO-Tet-On vector, knockdown of eIF4E significantly enhanced the antiproliferative effects of selinexor, sensitized resistant MM cells to selinexor, and increased apoptosis in MM cells. Immunofluorescent analysis of MM cells showed that the combined treatment increased the localization of residual eIF4E to the nucleus compared with selinexor-only treatment. The overexpression of eIF4E at least partially rescued the effects of selinexor in MM cells by reducing G1 cell cycle arrest and increasing the selinexor-IC50 10-fold. Moreover, the combination of selinexor with pharmacologic inhibitors of protein translation showed synergistic anti-MM effects. These results suggest a synergistic anti-MM effect of selinexor combined with eIF4E inhibitors in vitro. Our work provides a better understanding of the potential mechanism of resistance to selinexor and a rationale for combining selinexor with eIF4E inhibitors for the treatment of MM.


Assuntos
Carioferinas , Mieloma Múltiplo , Humanos , Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Carioferinas/farmacologia , Carioferinas/uso terapêutico , Fator de Iniciação 4E em Eucariotos/metabolismo , Apoptose , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Biossíntese de Proteínas
8.
Nat Cancer ; 4(1): 27-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581735

RESUMO

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.


Assuntos
Leucemia Mieloide Aguda , Adulto , Humanos , Criança , Leucemia Mieloide Aguda/genética , Medula Óssea/patologia , Linfócitos T Reguladores/patologia , Inflamação/patologia , Medição de Risco , Microambiente Tumoral
9.
Biomedicines ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289662

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive, X-linked childhood neuromuscular disorder that results from loss-of-function mutations in the DYSTROPHIN gene. DMD patients exhibit muscle necrosis, cardiomyopathy, respiratory failure, and loss of ambulation. One of the major driving forces of DMD disease pathology is chronic inflammation. The current DMD standard of care is corticosteroids; however, there are serious side effects with long-term use, thus identifying novel anti-inflammatory and anti-fibrotic treatments for DMD is of high priority. We investigated the next-generation SINE compound, KPT-8602 (eltanexor) as an oral therapeutic to alleviate dystrophic symptoms. We performed pre-clinical evaluation of the effects of KPT-8602 in DMD zebrafish (sapje) and mouse (D2-mdx) models. KPT-8602 improved dystrophic skeletal muscle pathologies, muscle architecture and integrity, and overall outcomes in both animal models. KPT-8602 treatment ameliorated DMD pathology in D2-mdx mice, with increased locomotor behavior and improved muscle histology. KPT-8602 altered the immunological profile of the dystrophic mice, and reduced circulating osteopontin serum levels. These findings demonstrate KPT-8602 as an effective therapeutic in DMD through by promotion of an anti-inflammatory environment and overall improvement of DMD pathological outcomes.

10.
Front Oncol ; 12: 808021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059685

RESUMO

Chordoma is a rare cancer that grows in the base of the skull and along the mobile spine from remnants of embryonic notochord tissue. The cornerstone of current treatments is surgical excision with adjuvant radiation therapy, although complete surgical removal is not always possible. Chordomas have high rates of metastasis and recurrence, with no approved targeted agents. Selinexor and eltanexor are selective inhibitors of nuclear export (SINE) that prevent the karyopherin protein exportin-1 (XPO1) from shuttling its cargo proteins through nuclear pore complexes out of the nucleus and into the cytoplasm. As cancer cells overexpress XPO1, and many of its cargos include tumor suppressor proteins and complexes bound to oncogene mRNAs, XPO1 inhibition can suppress oncogene translation and restore tumor suppressor protein activity in different cancer types. SINE compounds have exhibited anti-cancer activity in a wide range of hematological and solid tumor malignancies. Here we demonstrate the preclinical effectiveness of SINE compounds used as single agents or in combination with either the proteasome inhibitor, bortezomib, or the CDK4/6 inhibitor, abemaciclib, against various patient- derived xenograft (PDX) mouse models of chordoma, which included clival and sacral chordomas from adult or pediatric patients with either primary or metastatic disease, with either differentiated or poorly differentiated subtypes. SINE treatment significantly impaired tumor growth in all five tested chordoma models, with the selinexor and abemaciclib combination showing the strongest activity (tumor growth inhibition of 78-92%). Immunohistochemistry analysis of excised tumors revealed that selinexor treatment resulted in marked induction of apoptosis and reduced cell proliferation, as well as nuclear accumulation of SMAD4, and reduction of Brachyury and YAP1. RNA sequencing showed selinexor treatment resulted in differences in activated and repressed signaling pathways between the PDX models, including changes in WNT signaling, E2F pathways and glucocorticoid receptor signaling. This is consistent with SINE-compound mediated XPO1 inhibition exhibiting anti-cancer activity through a broad range of different mechanisms in different molecular chordoma subsets. Our findings validate the need for further investigation into selinexor as a targeted therapeutic for chordoma, especially in combination with abemaciclib.

11.
Blood Adv ; 6(19): 5570-5581, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35788257

RESUMO

Survival of patients with acute myeloid leukemia (AML) is inversely associated with age, but the impact of race on outcomes of adolescent and young adult (AYA; range, 18-39 years) patients is unknown. We compared survival of 89 non-Hispanic Black and 566 non-Hispanic White AYA patients with AML treated on frontline Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology protocols. Samples of 327 patients (50 Black and 277 White) were analyzed via targeted sequencing. Integrated genomic profiling was performed on select longitudinal samples. Black patients had worse outcomes, especially those aged 18 to 29 years, who had a higher early death rate (16% vs 3%; P=.002), lower complete remission rate (66% vs 83%; P=.01), and decreased overall survival (OS; 5-year rates: 22% vs 51%; P<.001) compared with White patients. Survival disparities persisted across cytogenetic groups: Black patients aged 18 to 29 years with non-core-binding factor (CBF)-AML had worse OS than White patients (5-year rates: 12% vs 44%; P<.001), including patients with cytogenetically normal AML (13% vs 50%; P<.003). Genetic features differed, including lower frequencies of normal karyotypes and NPM1 and biallelic CEBPA mutations, and higher frequencies of CBF rearrangements and ASXL1, BCOR, and KRAS mutations in Black patients. Integrated genomic analysis identified both known and novel somatic variants, and relative clonal stability at relapse. Reduced response rates to induction chemotherapy and leukemic clone persistence suggest a need for different treatment intensities and/or modalities in Black AYA patients with AML. Higher early death rates suggest a delay in diagnosis and treatment, calling for systematic changes to patient care.


Assuntos
População Negra , Leucemia Mieloide Aguda , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citogenética , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/etnologia , Leucemia Mieloide Aguda/mortalidade , Proteínas Proto-Oncogênicas p21(ras) , Indução de Remissão , Adulto Jovem
12.
JCO Precis Oncol ; 6: e2200147, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35704796

RESUMO

PURPOSE: Selinexor is the first selective inhibitor of nuclear export to be approved for the treatment of relapsed or refractory multiple myeloma (MM). Currently, there are no known genomic biomarkers or assays to help select MM patients at higher likelihood of response to selinexor. Here, we aimed to characterize the transcriptomic correlates of response to selinexor-based therapy. METHODS: We performed RNA sequencing on CD138+ cells from the bone marrow of 100 patients with MM who participated in the BOSTON study, followed by differential gene expression and pathway analysis. Using the differentially expressed genes, we used cox proportional hazard models to identify a gene signature predictive of response to selinexor, followed by validation in external cohorts. RESULTS: The three-gene signature predicts response to selinexor-based therapy in patients with MM in the BOSTON cohort. Then, we validated this gene signature in 64 patients from the STORM cohort of triple-class refractory MM and additionally in an external cohort of 35 patients treated in a real-world setting outside of clinical trials. We found that the signature tracks with both depth and duration of response, and it also validates in a different tumor type using a cohort of pretreatment tumors from patients with recurrent glioblastoma. Furthermore, the genes involved in the signature, WNT10A, DUSP1, and ETV7, reveal a potential mechanism through upregulated interferon-mediated apoptotic signaling that may prime tumors to respond to selinexor-based therapy. CONCLUSION: In this study, we present a present a novel, three-gene expression signature that predicts selinexor response in MM. This signature has important clinical relevance as it could identify patients with cancer who are most likely to benefit from treatment with selinexor-based therapy.


Assuntos
Mieloma Múltiplo , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Hidrazinas/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/induzido quimicamente , Triazóis
13.
Clin Cancer Res ; 28(3): 452-460, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728525

RESUMO

PURPOSE: Selinexor is an oral selective inhibitor of exportin-1 (XPO1) with efficacy in various solid and hematologic tumors. We assessed intratumoral penetration, safety, and efficacy of selinexor monotherapy for recurrent glioblastoma. PATIENTS AND METHODS: Seventy-six adults with Karnofsky Performance Status ≥ 60 were enrolled. Patients undergoing cytoreductive surgery received up to three selinexor doses (twice weekly) preoperatively (Arm A; n = 8 patients). Patients not undergoing surgery received 50 mg/m2 (Arm B, n = 24), or 60 mg (Arm C, n = 14) twice weekly, or 80 mg once weekly (Arm D; n = 30). Primary endpoint was 6-month progression-free survival rate (PFS6). RESULTS: Median selinexor concentrations in resected tumors from patients receiving presurgical selinexor was 105.4 nmol/L (range 39.7-291 nmol/L). In Arms B, C, and D, respectively, the PFS6 was 10% [95% confidence interval (CI), 2.79-35.9], 7.7% (95% CI, 1.17-50.6), and 17% (95% CI, 7.78-38.3). Measurable reduction in tumor size was observed in 19 (28%) and RANO-response rate overall was 8.8% [Arm B, 8.3% (95% CI, 1.0-27.0); C: 7.7% (95% CI, 0.2-36.0); D: 10% (95% CI, 2.1-26.5)], with one complete and two durable partial responses in Arm D. Serious adverse events (AEs) occurred in 26 (34%) patients; 1 (1.3%) was fatal. The most common treatment-related AEs were fatigue (61%), nausea (59%), decreased appetite (43%), and thrombocytopenia (43%), and were manageable by supportive care and dose modification. Molecular studies identified a signature predictive of response (AUC = 0.88). CONCLUSIONS: At 80 mg weekly, single-agent selinexor induced responses and clinically relevant PFS6 with manageable side effects requiring dose reductions. Ongoing trials are evaluating safety and efficacy of selinexor in combination with other therapies for newly diagnosed or recurrent glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Hidrazinas/administração & dosagem , Recidiva Local de Neoplasia/tratamento farmacológico , Triazóis/administração & dosagem , Administração Oral , Adulto , Idoso , Encéfalo/metabolismo , Neoplasias Encefálicas/cirurgia , Procedimentos Cirúrgicos de Citorredução , Feminino , Glioblastoma/cirurgia , Humanos , Hidrazinas/efeitos adversos , Hidrazinas/metabolismo , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Triazóis/efeitos adversos , Triazóis/metabolismo , Adulto Jovem
15.
Haematologica ; 107(5): 1034-1044, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261293

RESUMO

Expression levels of long non-coding RNA (lncRNA) have been shown to associate with clinical outcome of patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the frequency and clinical significance of genetic variants in the nucleotide sequences of lncRNA in AML patients is unknown. Herein, we analyzed total RNA sequencing data of 377 younger adults (aged <60 years) with CN-AML, who were comprehensively characterized with regard to clinical outcome. We used available genomic databases and stringent filters to annotate genetic variants unequivocally located in the non-coding transcriptome of AML patients. We detected 981 variants, which are recurrently present in lncRNA that are expressed in leukemic blasts. Among these variants, we identified a cytosine-to-thymidine variant in the lncRNA RP5-1074L1.4 and a cytosine-to-thymidine variant in the lncRNA SNHG15, which independently associated with longer survival of CN-AML patients. The presence of the SNHG15 cytosine-to-thymidine variant was also found to associate with better outcome in an independent dataset of CN-AML patients, despite differences in treatment protocols and RNA sequencing techniques. In order to gain biological insights, we cloned and overexpressed both wild-type and variant versions of the SNHG15 lncRNA. In keeping with its negative prognostic impact, overexpression of the wild-type SNHG15 associated with higher proliferation rate of leukemic blasts when compared with the cytosine-to-thymidine variant. We conclude that recurrent genetic variants of lncRNA that are expressed in the leukemic blasts of CN-AML patients have prognostic and potential biological significance.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Transcriptoma , Adulto , Citosina , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Pessoa de Meia-Idade , Mutação , Prognóstico , RNA Longo não Codificante/genética , Timidina
16.
Front Oncol ; 11: 785635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926302

RESUMO

Selinexor is an FDA approved selective inhibitor of the nuclear export protein exportin-1 (XPO1) and causes specific cancer cell death via nuclear accumulation of tumor suppressor proteins. Design of rational studies for the use of selinexor in combination with other therapeutic agents, such as immunotherapies, requires a fundamental understanding of the effects of selinexor on the immune system. One important emerging area of immunotherapy are natural killer (NK) cell based therapeutics. NK cell function is tightly regulated by a balance of signals derived from multiple activating and inhibitory receptors. Thus in cancer, up-regulation of stress ligands recognised by activating receptors or down-regulation of HLA class I recognised by inhibitory receptors can result in an anti-cancer NK cell response. Changes in XPO1 function therefore have the potential to affect NK cell function through shifting this balance. We therefore sought to investigate how selinexor may affect NK cell function. Selinexor pre-treatment of lymphoma cells significantly increased NK cell mediated cytotoxicity against SU-DHL-4, JeKo-1 and Ramos cells, concurrent with increased CD107a and IFNγ expression on NK cells. In addition, selinexor enhanced ADCC against lymphoma cells coated with the anti-CD20 antibodies rituximab and obinutuzumab. In probing the likely mechanism, we identified that XPO1 inhibition significantly reduced the surface expression of HLA-E on lymphoma cell lines and on primary chronic lymphocytic leukemia cells. HLA-E binds the inhibitory receptor NKG2A and in accordance with this, selinexor selectively increased activation of NKG2A+ NK cells. Our data reveals that selinexor, in addition to its direct cytotoxic activity, also activates an anti-cancer immune response via disruption of the inhibitory NKG2A:HLA-E axis.

17.
Antiviral Res ; 192: 105115, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157321

RESUMO

The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways. Selinexor is an FDA-approved XPO1 inhibitor. Through bioinformatics analysis, we predicted nuclear export sequences in the ACE-2 protein and confirmed by in vitro testing that inhibition of XPO1 with selinexor induces nuclear localization of ACE-2. Administration of selinexor inhibited viral infection prophylactically as well as therapeutically in vitro. In a ferret model of COVID-19, selinexor treatment reduced viral load in the lungs and protected against tissue damage in the nasal turbinates and lungs in vivo. Our studies demonstrated that selinexor downregulated the pro-inflammatory cytokines IL-1ß, IL-6, IL-10, IFN-γ, TNF-α, and GMCSF, commonly associated with the cytokine storm observed in COVID-19 patients. Our findings indicate that nuclear export is critical for SARS-CoV-2 infection and for COVID-19 pathology and suggest that inhibition of XPO1 by selinexor could be a viable anti-viral treatment option.


Assuntos
Tratamento Farmacológico da COVID-19 , Hidrazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Triazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/farmacologia , COVID-19/virologia , Chlorocebus aethiops , Citocinas , Furões , Humanos , Carioferinas/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/virologia , SARS-CoV-2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células Vero , Replicação Viral
18.
Blood Adv ; 5(5): 1474-1482, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33683341

RESUMO

Although ∼80% of adult patients with cytogenetically normal acute myeloid leukemia (CN-AML) achieve a complete remission (CR), more than half of them relapse. Better identification of patients who are likely to relapse can help to inform clinical decisions. We performed RNA sequencing on pretreatment samples from 268 adults with de novo CN-AML who were younger than 60 years of age and achieved a CR after induction treatment with standard "7+3" chemotherapy. After filtering for genes whose expressions were associated with gene mutations known to impact outcome (ie, CEBPA, NPM1, and FLT3-internal tandem duplication [FLT3-ITD]), we identified a 10-gene signature that was strongly predictive of patient relapse (area under the receiver operating characteristics curve [AUC], 0.81). The signature consisted of 7 coding genes (GAS6, PSD3, PLCB4, DEXI, JMY, NRP1, C10orf55) and 3 long noncoding RNAs. In multivariable analysis, the 10-gene signature was strongly associated with relapse (P < .001), after adjustment for the FLT3-ITD, CEBPA, and NPM1 mutational status. Validation of the expression signature in an independent patient set from The Cancer Genome Atlas showed the signature's strong predictive value, with AUC = 0.78. Implementation of the 10-gene signature into clinical prognostic stratification could be useful for identifying patients who are likely to relapse.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Adulto , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Recidiva
19.
Cancer Discov ; 11(3): 626-637, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33277314

RESUMO

Clinical outcome of patients with acute myeloid leukemia (AML) is associated with cytogenetic and molecular factors and patient demographics (e.g., age and race). We compared survival of 25,523 non-Hispanic Black and White adults with AML using Surveillance Epidemiology and End Results (SEER) Program data and performed mutational profiling of 1,339 patients with AML treated on frontline Alliance for Clinical Trials in Oncology (Alliance) protocols. Black patients had shorter survival than White patients, both in SEER and in the setting of Alliance clinical trials. The disparity was especially pronounced in Black patients <60 years, after adjustment for socioeconomic (SEER) and molecular (Alliance) factors. Black race was an independent prognosticator of poor survival. Gene mutation profiles showed fewer NPM1 and more IDH2 mutations in younger Black patients. Overall survival of younger Black patients was adversely affected by IDH2 mutations and FLT3-ITD, but, in contrast to White patients, was not improved by NPM1 mutations. SIGNIFICANCE: We show that young Black patients have not benefited as much as White patients from recent progress in AML treatment in the United States. Our data suggest that both socioeconomic factors and differences in disease biology contribute to the survival disparity and need to be urgently addressed.See related commentary by Vyas, p. 540.This article is highlighted in the In This Issue feature, p. 521.


Assuntos
Negro ou Afro-Americano/genética , Patrimônio Genético , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Mutação , Avaliação de Resultados em Cuidados de Saúde , Prognóstico , Vigilância em Saúde Pública , Sistema de Registros , Fatores de Risco , Programa de SEER , Estados Unidos/epidemiologia , Adulto Jovem
20.
Nature ; 586(7831): 769-775, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057200

RESUMO

Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers1. However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 × 10-8), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.


Assuntos
Predisposição Genética para Doença/genética , Células-Tronco Hematopoéticas/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Neoplasias/genética , Neoplasias/patologia , Linhagem da Célula/genética , Autorrenovação Celular , Quinase do Ponto de Checagem 2/genética , Feminino , Humanos , Leucócitos/patologia , Masculino , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Risco , Homeostase do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...